Maths Medium Term Planning - Year 1 - Summer 1

	Year 1 Summer 1		
	Number and Place Value		
	Learning Intention	Implementation	Impact
	To count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number.	During mental maths sessions the children will continue to extend counting skills - counting in 1s forwards and backwards to at least 100. They will count using the abacus, number line, a 100 square and counting around the class. They will apply their knowledge to a sequence e.g. 68, 69, 70, _. What number comes next? Sarah is counting backwards from 90 to 85 . She says the numbers $90,89,88$, 87,85 . What mistake has she made?	All children will be able to count forwards and backwards to/from at least 100 and apply this knowledge in sequences.
	To count in multiples of tens.	During mental maths the children will count forwards and backwards in steps of 10 to/from 100. They will apply this to questions e.g. True or false? I start at 0 and count in tens. I will say the number 41.	All children will be able to count forwards and backwards to/from 100 in steps of 10 and apply this knowledge to
	To count in multiples of twos	During mental maths the children will count in multiples of two starting at 0 and starting at 1 . They will relate these to odd and even numbers. They will apply their knowledge to a sequence e.g. 12, 14, $16, \ldots$ What number comes next? They will apply this to questions e.g. True or false? I start at 0 and count in twos. I will say the number 20?	problems. All children will be able to count forwards and backwards in 2 s to at least 50 and apply this knowledge to sequences and problems.
	To count in multiples of fives	During mental maths the children will count in multiples of five starting at 0 . They will apply their knowledge to a sequence e.g.15, 20, 25, _. What number comes next? They will apply this to questions e.g. True or false? I start at 0 and count in fives. I will say the number 26?	All children will be able to count forwards and backwards in 5 s to at least 100 and apply this knowledge to sequences and problems.

To read and write numbers

 from $\mathbf{0}$ to 100 in numerals.
To read and write numbers

 from 1 to 20 in words.To identify one more, one less, ten more and ten less than a number.

To be able to order numbers

 to 100.To be able to identify odd and even numbers.

During mental maths sessions flash cards for reading numbers in numerals and also using number fans to make a number to 100. Also practise writing numerals from 1 to 100 . Apply - using the number cards 1, 2, 3, 4 and 5 . Use two of the digit cards to make a number greater than 40.

During mental maths session speed spelling on whiteboards of numbers in words (1 to ten as per phase 1 and $8,11,12,15,16,18$ as per phase 2 and $13,14,17,19,20$ as per phase 3). Also taken home as spellings. Flash cards for reading numbers in words.

During mental maths session the children will use a number fan/flash cards to find one more, one less, 10 more and 10 less than a number. Also part of minute maths (answering 151 more questions and moving onto 151 less questions).

During mental maths the children will be given three or five numbers between 0 to100 and they will have to put them in order from smallest to largest and vice versa. They will also say which number for example; will be in the third position?

During mental maths the children will be shown a target board. They will pick out odd/even numbers and explain why they are odd/even e.g. it is odd because it ends in a 1. They will apply these to questions such as: Which number could be the odd one out? 40, 71, 65. Pupils suggest their own reasoned ideas, for example 40 might be the odd

The children will be able to recognise numbers up to 100 and will know how to show them with the tens and ones arranged in the correct way. They will be able to write numbers correctly to 100 in numerals.

The children will know how to read and write numbers correctly in words as per phase 1, 2 and 3.

The children will understand that one more is the next number along when counting in ones and one less is the number before when counting in ones. They will understand that 10 more increases the tens column by 1 ten and 10 less reduces the tens column by 1 ten. They will be able to apply these to solve problems in different contexts.

The children will be able to order 3 numbers within 10 from smallest to largest \& vice versa. They will know how to use their knowledge of counting in ones and their knowledge of partitioning into tens and ones to order these.

	To be able to find doubles to 10. To recognise the place value of each digit in a two digit number (tens, ones). To use the language of equal to, more than, less than (fewer), most, least. To be able to use number facts to solve problems.	one out because it's not an odd number. Also can you choose two odd numbers with a difference of 2 (e.g. $5-3=2$). As part of the mental maths session the children will be able to find doubles up to 10. E.g. $10+10=20$. As part of the mental maths session the children will use flip books to work out how many tens and ones there are in a two digit number. As part of the mental maths session, the children will be shown two sets of objects - which one has the most? How do you know? How many more does it have (difference)? How could we work it out? (Estimate first). The children will practise with a flip book to:- - Write down a number less than 60/greater than 60. - Write down a multiple of 2,5 and 10 (explain what multiples are). - Write down odd/even number. - Write down a 2 digit number/1 digit number. - Write a number where the tens digit is even. - Write a number where the digits add to make 6. The children will be given a 100 square and an envelope with different clues in, like the clues above. They must cross off the numbers according to the clues as they go along. Eventually they will be left with one number. Make it clear that they don't have to do the clues in order. The idea is to eliminate as many numbers as possible at a time.	They will understand that even numbers have a pair and odd numbers don't. They will be able to identify odd and even numbers by the digit it ends in. They will understand what 'difference' means. They will understand that doubling a number is the same as adding the same number again. The children will understand that a two digit number is made up of tens and ones. They will relate that 1 ten is 10,2 tens are 20 etc... The children will understand what the vocabulary more than, less than, most and least means and be able to apply this. The children will be able to use their number facts to help them solve a problem and find the remaining number.
	Addition \& Subtraction		
	Learning intention	Implementation	Impact

To solve missing number addition and subtraction problems using a number line.

The children will revise solving missing number addition -2 numbers with one missing $-2^{\text {nd }}$ position and then $1^{\text {st }}$ position. e.g. $3+$
Moving onto solving missing number addition problems with three numbers and one missing e.g. $3+5+=10$. \square

Mastery

Complete: $3+\square=10,10-\square=3,13+\square=20,20-\square=13$.
What do you notice? Children may 'know' number pairs totalling ten but are they able to use them to support other calculations? For example, when probed to say, "If you know $3+7=10$, what else do you know? They should reply with answers such as $13+7=20$ or $4+7=11$.

The children will solve missing number subtraction (2nd position) with sums up to 20 e.g. 19 - \quad up to 10 for WT). They can use a number line to support calculation.
The children will move onto solving missing number subtraction problems with three numbers and one missing e.g. 9-5- $=2, \mathrm{~m} \square_{\text {ng onto }} 2$ numbers missing. Encourage them to use their mental maths to work them out.

Place the numbers so that all those which lie along a line add to the same total.
$1,2,3,4,5,6,7$
Total $=12$
Mastery

The children will understand that both sides of the sum should balance and they will also be able to use their bonds to work out the missing number.

They will understand how to use number bonds to 10 to support number bond calculations to 20 , when solving missing number problems

They will be able to apply their knowledge of working out missing number problems to different problems and contexts.

Take 9 numbers and organise them into a 3×3 grid so that the rows, columns and two diagonals add up to the same number.

8	3	4
1	5	9
6	7	2

Each week complete:-

Can they explain how this fact helps them with other facts?
Mastery: Magic squares - adding up to 15. Can they make each row and column add up to make 15 in a 3×3 grid.
The children will select a 2 digit number from the middle of the table and partition it in different ways, using apparatus to show their thinking (e.g. dennes equipment, beads, cups). For example if they pick 22. This can be shown as $20+2=22$ or $10+12=22$.

The children will be able to draw on previous experience e.g. solving magic squares. They will begin by trial and error and then gradually begin to work consistently when they see a pattern with the middle number.
The children will understand which digit represents the tens and which digit represents the ones in a two digit number. They will know how to partition a two digit number in different ways.

To be able to solve one-step 00123456789101112131415161718192021222324 problems that involve addition and subtraction, using concrete objects and pictorial representations.
 WT may need to count 10 in jumps of 1 initially, within 20.
 The children will have word problems where they are required to

To be able to use number bonds to solve problems.

I can use my number bonds to help me add 3 one digit numbers.
partition numbers into tens and ones to work them out.

Working in groups, each group will be given a set of ten cards, each showing one of the digits from 0 to 9 . They must divide the cards up between five envelopes so that there are two cards in each envelope. The sum of what the two numbers must equal is written on each envelope.

Discuss as a class first what we are being asked to do e.g. maximum of 2 cards in an envelope, must add up to the numbers on the envelope. The children can find the answer by using their own recording

3 children will stand on a grid to make 10. How many ways can this be done? If one person stands on 5 where can the other stand? Use unifix to support adding.

5	2	5
3	4	1
3	5	2

The children will understand the vocabulary which tells us the operation to carry out when solving word problem e.g. more means adding.

The children will be able to use their knowledge of number bonds to solve a problem. They will be able to find all of the solutions and prove it.

	equal parts of an object, shape or quantity. To be able to add halves and quarters. To be able to solve word problems relating to fractions.	The children will begin by adding halves and whole numbers e.g. $1 / 2+$ $11 / 2=2$. They will then move onto adding halves and quarters e.g. $1 / 4$ $+1 / 4+1 / 4+1 / 4+1 / 2+1 / 2=2$. Before she began eating Mollie's pizza looked like this: After she had finished eating some pizza, it looked like this. How much pizza had Mollie eaten? Draw a ring around the answer:A half a quarter two halves Tom's mum cut his apple into halves. How many pieces of apple did Tom have?	into quarters when it is equally split into 4 pieces. They can apply quarters to solve problems. The children will know how to add halves, quarters and whole numbers together. They will understand 4 quarters as making a whole and 2 halves making a whole. The children will know how to solve word problems relating to fractions.
	Measurement		
	Learning Intention	Implementation	Impact

To tell the time to the hour and half past the hour.

Time: earlier, later.

To measure and begin to

 record the following: Lengths and heights. To compare, describe and solve practical problems for: Lengths and heights (e.g. Tall/short) long/short, longer.
Mass or weight (e.g.

 heavy/light, heavier than, lighter than.
Capacity/volume

As part of the mental maths session children will set clocks to o'clock and half past times. They will then move onto setting clocks to one hour later and one hour earlier.

As part of the mental maths session the children will compare length/height/mass - How do you know that this (object) is heavier/lighter/longer/shorter/taller than this one? What is the unit of measurement for each?

Have pictures of a measuring jug, ruler and scales. Which would you use to measure the length of an object etc...?
The children will measure lengths up to 15 cm and then draw a line double the length. Can they then solve word problems such as Tom has a piece of ribbon 6 cm , he wants double the length. How long wil the piece of ribbon be that he wants?

GD - The children will have pictures of two different objects:-

The truck is \qquad than the bus.

They must complete the sentence to say whether they are heavier or ighter

All children can tell the time to o' clock and half past and find one hour later and one hour earlier
The children will know how to tell the time for one hour later applying the principle of one more and one hour earlier applying the principle one less They will be able to do this for o'clock and half past times.

The children will understand how we measure length, height, mass and capacity e.g. which equipment is used and what unit of measurement is used.

The children will be able to measure in cms and then apply their knowledge of doubles.

The children will be able to measure mass or weight using non-standard units (cubes) to compare objects and determine which is heavier/lighter.

To be able to estimate and measure whether there is more than, the same or less than a litre. To be able to solve problems relating to volume and capacity.	The children will be shown a teapot and they will be asked to make a sensible estimate as to how many cups it would take to fill up the teapot. Then they will be shown how many it actually takes. The children will then work in small groups and they will have different containers (bottle, saucepan, yoghurt pot, a cylinder and a bowl) to estimate and then measure the actual capacity using a cup. Talk about this not being very accurate and suggest what might be a more accurate way to measure liquid e.g. measuring jug using millilitres and litres. The children will have cards asking them to double the quantity of the liquid e.g. a jug has 200 ml of liquid. I want to double this amount. How much liquid will be in the jug? (Can they use their number bonds to help e.g. if they know $2+2=4$, then they $200+200$ $=400$. Show the children how much a litre of water is. They will have other containers, can they estimate whether the containers hold more than, less than or the same as a litre?	The children will understand what the terms volume and capacity mean and they will know how to estimate and measure using non-standard units. The children will know how much a litre of water is and be able to use this to estimate how much a container will hold.

triangles, hexagons and pentagons) and 3D shapes (cuboids, cubes, pyramids and spheres, cones, square based pyramid and triangular based pyramids).	mathematical vocabulary (vertices, sides, edges and faces). Also play shape shop and guess my shape. The children will be given a table of 2D shapes. Can they write the name of the shape in the box next to it and then write some of its properties? This includes sides, corners and is it symmetrical? WT - The children will be given a table with different 2D shapes. Can they match the name of the shape and the description of the shape to the correct picture of the shape? The children will be given a range of 3D objects which they will sort into groups e.g. cubes, cuboids, cylinders, pyramids and spheres. The children will be asked what the same is and what's different about these shapes? Which could be the odd one out and why? Could each one be the odd one out? Explain your reasoning.	properties and use this to answer questions.
Geometry - Position \& Direction.		
Learning Intention	Implementation	Impact
To describe position, direction and movement, including whole, half, quarter and three-quarter turns.	As part of the mental maths session the children will practically move on the spot to do whole turns, half turns, quarter and three quarter turns. They will include using the vocabulary left turn (anticlockwise), right turn (clockwise). Use language of position such as top, middle and bottom. The children will have a grid 5×3 where they will have to describe the position of certain objects using directions e.g. middle row and	The children will be able to apply their knowledge of fractions and telling the time (half past, quarter past) to move in the correct direction and into the correct position.

